New research unravels mitochondria's role in breast cancer metastasis

· News-Medical

Mitochondria have long been known as the tiny organelles that act as the battery packs inside our cells while also serving as internal sensors and communicators. But relatively little is understood about how their energy-producing activities in soupy cellular interiors impacts metastatic cancer, which occurs when cancerous cells spread in the body.

The team's insights will certainly be of deep interest to scientists studying mitochondrial dynamics and a range of cancers. Further, this discovery may eventually uncover a therapeutic opportunity for halting breast cancer progression.

She notes that the research team used several different approaches to promote mitochondrial elongation in breast cancer cells to reveal a common signature that would help them figure out which pathways are leading to a decrease in metastasis. This methodical approach was also used to determine clinical relevance.

"When we analyzed the mitochondrial morphology of different breast cancer cell lines, we observed that those with lower metastatic potential tend to have longer mitochondria. This suggests that a fragmented mitochondrial network could be associated with more aggressive presentations of the disease," Dr. Minarrieta says.

With the help of this common elongation signature acting as a sort of a measuring stick, the investigators were able to observe that a higher mitochondrial elongation score was associated with better outcomes in patients with breast cancer. That includes those with more aggressive subtypes.

"We believe that promoting mitochondrial elongation in breast cancer cells could be used during the initial course of treatment to prevent metastatic reoccurrence in the long run," says Dr. St-Pierre, adding that metastatic breast cancer often develops after individuals complete therapy for their initial diagnosis and live cancer-free for a time.

The evidence that leflunomide could be repurposed to prevent or delay metastatic disease in patients is a key translational aspect of the study, according to Dr. St-Pierre.

"We would like to explore further the translational aspect of these findings. Eventually, it would be important to perform clinical trials to test the impact of leflunomide on metastasis in cancer patients," says Dr. St-Pierre, whose Faculty of Medicine lab specializes in exploring new ways to reduce metastatic and treatment-resistant disease in women with breast cancer.

Source:

University of Ottawa

Journal reference: